Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications
نویسندگان
چکیده
Ahlswede and Winter [IEEE Trans. Inf. Th. 2002] introduced a Chernoff bound for matrix-valued random variables, which is a non-trivial generalization of the usual Chernoff bound for real-valued random variables. We present an efficient derandomization of their bound using the method of pessimistic estimators (see Raghavan [JCSS 1988]). As a consequence, we derandomize an efficient construction by Alon and Roichman [RSA 1994] of an expanding Cayley graph of logarithmic degree on any (possibly non-abelian) group. This gives an optimal solution to the homomorphism testing problem of Shpilka and Wigderson [STOC 2004]. We also apply these pessimistic estimators to the problem of solving semidefinite covering problems, thus giving a deterministic algorithm for the quantum hypergraph cover problem of Ahslwede and Winter. ∗Partially supported by NSF grant CCR-0324906 †Supported by an NDSEG Graduate Fellowship and a NSF Graduate Fellowship ACM Classification: G.3, G.2.2, F.2.1, F.1.2 AMS Classification: 68W20, 68R10, 60F10, 20D60, 81P68, 15A18
منابع مشابه
Derandomizing the AW matrix-valued Chernoff bound using pessimistic estimators and applications
Ahlswede and Winter [AW02] introduced a Chernoff bound for matrix-valued random variables, which is a non-trivial generalization of the usual Chernoff bound for real-valued random variables. We present an efficient derandomization of their bound using the method of pessimistic estimators (see Raghavan [Rag88]). As a consequence, we derandomize a construction of Alon and Roichman [AR94] (see als...
متن کاملRetraction of Wigderson-Xiao, “A Randomness-Efficient Sampler for Matrix-valued Functions and Applications”, ECCC TR05-107
We discovered an error in the proof of the main theorem of A Randomness-Efficient Sampler for Matrix-valued Functions and Applications, which appears as ECCC TR05-107 [WX05a], and also appeared in FOCS [WX05b]. We describe it below. This error invalidates all of the results concerning the expander walk sampler for matrix-valued functions. Nevertheless, we are able to use a different technique t...
متن کاملNote on sampling without replacing from a finite collection of matrices
This technical note supplies an affirmative answer to a question raised in a recent pre-print in the context of a “matrix recovery” problem. Assume one samples m Hermitian matrices X1, . . . , Xm with replacement from a finite collection. The deviation of the sum X1+ · · ·+Xm from its expected value in terms of the operator norm can be estimated by an “operator Chernoff-bound” due to Ahlswede a...
متن کاملMultiplying Pessimistic Estimators: Deterministic Approximation of Max TSP and Maximum Triangle Packing
We give a generalization of the method of pessimistic estimators [14], in which we compose estimators by multiplying them. We give conditions on the pessimistic estimators of two expectations, under which the product of the pessimistic estimators is a pessimistic estimator of the product of the two expectations. This approach can be useful when derandomizing algorithms for which one needs to bo...
متن کاملA Matrix Hyperbolic Cosine Algorithm and Applications
Wigderson and Xiao presented an efficient derandomization of the matrix Chernoff bound using the method of pessimistic estimators [WX08]. Building on their construction, we present a derandomization of the matrix Bernstein inequality which can be viewed as generalization of Spencer’s hyperbolic cosine algorithm [Spe77]. We apply our construction to several problems by analyzing its computationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theory of Computing
دوره 4 شماره
صفحات -
تاریخ انتشار 2008